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ABSTRACT

We define a notion of roundness for finite groups. Roughly speaking, a

group is round if one can order its elements in a cycle in such a way

that some natural summation operators map this cycle into new cycles

containing all the elements of the group. Our main result is that this

combinatorial property is equivalent to nilpotence.

1. Introduction and main results

Given a finite group G of order n = |G|, a cycle in G is a finite sequence of

elements of G. A cycle may be continued to a periodic sequence over G, and

it will be often more convenient to think of the cycle as this sequence. A 1-1

cycle over G is a cycle of length n, in which every element of the group appears

exactly once.
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An n-length cycle g = (gi)
n−1
i=0 in G is k-round if for every k integers

m1, m2, . . . , mk the cycle

gm1,m2,...,mk
=

( k
∏

j=1

gi+mj

)n−1

i=0

= (gi+m1
gi+m2

· · · gi+mk
)n−1
i=0

is a 1-1 cycle in G. (The addition of indices here and later on is to be understood

modulo the length n of the cycle.) Such a cycle is in particular a 1-1 cycle. (To

see this, take m1 = m2 = · · · = mk = 0.)

The following definition plays a central role in the study initiated in this

paper.

Definition 1.1: (1) G is k-round if it admits a k-round cycle.

(2) An n-length cycle in G is totally round if it is k-round for every

positive integer k with (k, n) = 1.

(3) G is round if it admits a totally round cycle.

Note that G cannot possibly be k-round if (k, n) > 1. In fact, if p is any prime

divisor of (k, n) and g = (gi)
n−1
i=0 is any 1-1 cycle, then the cycle gk = (gk

i )n−1
i=0

contains the identity element 1 ∈ G at least p times. This explains the constraint

(k, n) = 1 in Definition 1.1 and Theorem 1.2 below.

Also, the property of a group being round appears to be stronger than the

property of it being k-round for every k with (k, n) = 1. Nevertheless, the

implication (2) =⇒ (3) in Theorem 1.2 will show that the two are in fact

equivalent.

Our main result is the equivalence of the last two conditions in the following

theorem.

Theorem 1.2: Let G be a finite group of order n. The following conditions

are equivalent:

(1) G is k-round for some k > n2;

(2) G is k-round for every k with (k, n) = 1;

(3) G is round;

(4) G is nilpotent.

For additional equivalent conditions (for a finite group to be round), see

Theorem 1.7 and Remark 1.6 below. Recall that one of the equivalent conditions
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for a finite group to be nilpotent is to be isomorphic to a direct product of p-

groups. (For this and other basic results used throughout the paper, we refer

to any standard text, say [9].)

Theorem 1.2 implies that the family of round groups satisfies some closure

properties.

Corollary 1.3: Any subgroup and any quotient group of a round group is

round as well.

In a similar vein, if G is k-round and l|k (l divides k), then G is l-round as

well. Moreover, if g is a k-round cycle, then it is also l-round. In fact, let g′ be

any product of l rotates of g. Then g′ is obviously k/l-round, and, in particular,

it is 1-1.

Example 1.4: Any finite cyclic group Zn is immediately seen to be round, as

the “arithmetic progression” cycle g = (i)
n−1
i=0 is totally round. Indeed, every

product g′ of k rotates of g is itself an arithmetic progression whose difference

is k; thus g′ is a 1-1 cycle if (k, n) = 1. The fact that other finite nilpotent

groups, even abelian groups such as Z3 × Z3, are round is less obvious.

Remark 1.5: The first condition in Theorem 1.2, which appears weaker than

the next two, may be replaced by the even weaker condition

(1.1) G is k-round for some k > Φ′(n),

where Φ′(n) is the maximal integer which does not belong to the additive semi-

group generated by the (relatively prime) numbers

(1.2) bi = n/pei

i 1 ≤ i ≤ r,

n = pe1

1 pe2

2 · · · per
r being the prime power factorization of n. (This is the essence

of the proof of implication (1) =⇒ (4) in Theorem 1.2.) Condition (1.1) indeed

implies condition (1) in Theorem 1.2; see (1.3).

More generally, for a nonempty subset S ⊆ N = {1, 2, 3, . . .} such that

gcd(S) = 1, denote by Σ(S) the additive semigroup generated by S, and put

Σ′(S) = N−Σ(S). Thus S ⊆ Σ(S) ⊆ N, and Σ′(S) is the set of positive integers

which cannot be represented as finite sums of elements of S. The number

Φ(S) = sup(Σ′(S) ∪ {−1})
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is the so-called Frobenius number of S. It is easily seen that

Φ(S) = −1 ⇐⇒ 1 ∈ S; Φ(S) < ∞ ⇐⇒ gcd(S) = 1.

In our case, denoting B = {bi : 1 ≤ i ≤ r} (see (1.2)), we observe that gcd(B) =

1 and Φ′(n) = Φ(B).

For |S| = 2, there exists a simple formula for the Frobenius number Φ(S),

which goes back at least as far as Sylvester [16]: if (x, y) = 1, then Φ({x, y}) =

xy − x − y. However, there exists no such formula for |S| ≥ 3, nor should such

a formula be expected. (See, for example, [1], [2] and the references therein for

more information regarding the so-called linear diophantine problem of Frobe-

nius.) Nevertheless, there are various upper bounds: [5],[17],[15]. Employing

these bounds, we easily see that

(1.3) Φ′(n) = Φ(B) ≤ n2.

(Actually, better estimates are possible for Φ′(n), but we care here about the

phenomenon rather than the exact bound.)

Remark 1.6: It is possible to suggest a stronger notion of roundness. Let a

cycle g = (gi)
n−1
i=0 over G be strongly k-round if for every number l of in-

tegers m1, m2, . . . , ml and ε1, ε2, . . . , εl ∈ {−1, 1} with
∑l

j=1 εj = k, the cycle
(

∏l
j=1 g

εj

i+mj

)n−1

i=0
is 1-1. Observe that, if k1 ≡ k2(modn), then a cycle is

strongly k1-round if and only if it is strongly k2-round. Indeed, multiplying a

product of rotates of a cycle g by gn (or g−n) does not alter the product. We

conclude that the existence of a strongly k-round cycle for some k implies the

existence of such a cycle for some k > n2. This cycle is, in particular, k-round,

and, by Theorem 1.2, the group G is round. On the other hand, a totally round

cycle is clearly strongly k-round for every k for all k relatively prime to n. Con-

sequently, a group admits a strongly k-round cycle for some k if and only if it

is round.

The above discussion is summarized in the following

Theorem 1.7: Let G be a finite group of order n. The following four conditions

are equivalent:

(1) G admits a strongly 1-round cycle;

(2) G admits a strongly k-round cycle for some k;

(3) G admits a strongly k-round cycle for every k with (k, n) = 1;
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(4) G is round.

While the proof of Theorem 1.2 gives a way of constructing totally round

cycles for nilpotent groups, it does not provide a way of deciding whether a

given cycle is such. The following proposition gives an algorithm to that effect.

Proposition 1.8: There exists an effective constant K = K(n) such that, if

a 1-1 cycle g over a finite group G of order n is k-round for every k ≤ K with

(k, n) = 1, then it is totally round.

The following proposition demonstrates that a nonnilpotent group may still

be k-round for some k’s. The simplest example with k = 2 is given by the family

of non-abelian groups whose order is a product of two distinct odd primes.

Recall that, for odd primes p, q with p < q, a non-abelian group of order pq

exists (and is unique) if and only if q ≡ 1(mod p).

Proposition 1.9: Let G be a non-abelian group of order pq, where p, q are

odd primes with p < q. Then G is 2-round.

Nevertheless, some groups are unround — do not admit a k-round cycle for

any k > 1. The following theorem presents two such families of groups.

Theorem 1.10: The following groups are unround:

(1) Dihedral groups of order divisible by 3.

(2) The symmetric group Sl for every l ≥ 3. More generally, all sufficiently

large almost simple groups with the exception of the groups 2B2(q)

(cf. [10]).

One of the motivations for this study (which is a special case of Example 1.4)

was the observation that a cyclic group of odd order admits a 1-1 cycle, whose

product with its rotate (by a single position) is again such.

More precisely, define an operator S (for sum) on the set of all cycles g =

(gi)
n−1
i=0 over G by:

S(g) = g0,1 = (gigi+1)
n−1
i=0 , g ∈ Gn.

The following proposition follows in a straightforward manner from Theorem

1.2 and shows that in many cases we may apply S over and over again, obtaining

each time a 1-1 cycle.
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Proposition 1.11: A nilpotent group of odd order admits a cycle g such that

Sm(g) is a 1-1 cycle for every positive integer m.

In view of the above proposition, it is natural to ask whether there exists

an analogue if we replace addition by subtraction. Of course, starting with a

1-1 cycle g = (gi)
n−1
i=0 in G, the cycle consisting of “differences” of consecutive

entries of g, namely (gig
−1
i+1)

n−1
i=0 , does not contain the unit element of G, and

thus cannot possibly be 1-1. Thus, we shall consider now cycles of arbitrary

lengths L, where n|L. Such a cycle is balanced if it contains the same number

of occurrences of each element of G. Define a transformation D on the set of

all cycles g = (gi)
L−1
i=0 of length L over G by

D(g) = (gig
−1
i+1)

L−1
i=0 .

For an integer l ≥ 1, a cycle g is Dl-balanced if Dr(g) is balanced for every

integer 0 ≤ r ≤ l. A cycle g is D∞-balanced if Dr(g) is balanced for every

r ≥ 1. Finally, for 1 ≤ s ≤ ∞, a group G is Ds-balanced if it admits a

Ds-balanced cycle.

The following result will be shown to follow relatively easily from Theorem 1.2.

Theorem 1.12: Every finite nilpotent group of odd order is D∞-balanced.

This result should be contrasted with

Theorem 1.13: Every finite group is Dr-balanced for all integers r ≥ 1.

Remark 1.14: For non-abelian groups one may consider four different versions

for the transformation D. Namely, starting from g = (gi)
L−1
i=0 , one may let the

i-th entry of D(g) be either gig
−1
i+1, as done above, or g−1

i+1gi, or g−1
i gi+1, or

gi+1g
−1
i . It turns out that both Theorems 1.12 and 1.13 hold for each of these

variations. Moreover, the cycle g we construct actually has the property that we

may apply at each stage any of the four variations (of the difference operator)

and still get only balanced cycles.

We conjecture that the group Z2 = {0, 1} is not D∞-balanced. The conjecture

would imply that no solvable finite group of even order is D∞-balanced.

The authors wish to express their gratitude to V. Lev for referring them to his

paper [12], which served as the initial motivation for considering the questions

studied in this paper.
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2. Proofs

Before proving Theorem 1.2, we present several auxiliary results.

Lemma 2.1: If G has a subgroup H contained in the center Z(G) ⊆ G, such

that both H and G/H are k-round, then G is k-round as well.

Lemma 2.2: If G1 and G2 are both k-round, then G1 × G2 is k-round as well.

Obviously, the following lemma contains both Lemmas 2.1 and 2.2 as special

cases, so that we shall prove only it instead.

Lemma 2.3: If G has a normal subgroup H , each coset of which contains an

element commuting with all elements of H , and if both H and G/H are k-round,

then G is k-round as well.

Remark 2.4: In fact, we prove more than is stated. Namely, the construction

of a k-round cycle in G, based on such cycles in H and G/H , does not depend

on k. Hence, if we start with cycles in these two groups which are k-round for

several values of k, then so are the resulting cycles in G. In particular, if both

H and G/H are round, then so is G.

Proof of Lemma 2.3. Let H = {h0, h1, . . . , hs−1} and let x0, x1, . . . , xt−1 be

representatives of all cosets of H , such that each xj commutes with H . Rear-

ranging the hi’s and xj ’s, if necessary, we may assume that the cycle h = (hi)
s−1
i=0

is k-round in H and that the cycle x = (Hxj)
t−1
j=0 is k-round in G/H . Consider

the cycle

g = (h0x0, . . . , h0xt−1, h1x0, . . . , h1xt−1, . . . , hs−1x0, . . . , hs−1xt−1)

in G. (Formally, if 0 ≤ i ≤ n − 1, write i = at + b with 0 ≤ a ≤ s − 1,

0 ≤ b ≤ t − 1, and then put gi = haxb = hbi/tcxi mod t.) We claim that g

is k-round. Indeed, suppose it is not. Let m1, m2, . . . , mk be integers in

{0, 1, . . . , n − 1} such that

(2.1)

k
∏

j=1

gi+mj
=

k
∏

j=1

gi′+mj

for some i, i′ with 0 ≤ i, i′ ≤ n − 1. Projecting to G/H , we obtain

k
∏

j=1

Hgi+mj
=

k
∏

j=1

Hgi′+mj
,
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that is

(2.2) H

k
∏

j=1

xi+mj (mod t) = H

k
∏

j=1

xi′+mj (mod t).

Since x is a k-round cycle in G/H , (2.2) implies i ≡ i′(mod t). Hence (2.1)

may be rewritten in the form

k
∏

j=1

hb(i+mj)/tc mod s xi+mj (mod t) =
k

∏

j=1

hb(i′+mj)/tc mod s xi′+mj (mod t).

As the xi’s commute with H , this yields

k
∏

j=1

hb(i+mj)/tc mod s =

k
∏

j=1

hb(i′+mj)/tc mod s.

Since h is a k-round cycle in H , and i ≡ i′(mod t), this implies that

bi/tc mod s = bi′/tc mod s, and therefore i = i′. This proves the proposi-

tion.

Our main tool for proving that a group is not k-round for a certain k is

provided by the following proposition. For a finite group G and a positive

integer l, denote by Rl(G) the number of solutions of the equation xl = 1 in G.

Proposition 2.5: Let G be a finite group of order n. If

Rl1(G)Rl2(G) · · ·Rls(G) > ns−1

for some positive integers s, l1, l2, . . . , ls, then G is not k-round for any k of the

form k = c1l1 + c2l2 + · · · + csls, where c1, c2, . . . , cs are non-negative integers.

Obviously, one would usually apply the proposition with all li’s being divisors

of n and strictly positive ci’s. We may view the proposition as a strengthening

of our former observation (following Definition 1.1) that G cannot be k-round

if (k, n) > 1.

Proof. Let g = (gi)
n−1
i=0 be any cycle, and let k be as in the proposition. We

have to show that g is not k-round.

Consider the cycles g(j) = gcj lj , 1 ≤ j ≤ s. According to our assumptions,

the multiplicity Mj of the identity element 1 ∈ G in g(j) is at least Rlj (G). Now

consider all cycles of the form gm1,...,ms
=

(

∏s
j=1 g

(j)
i+mj

)n−1

i=0
as (m1, . . . , ms)

runs through all s-tuples of integers between 0 and n − 1. We have ns cycles,
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containing between them altogether at least n
∏s

j=1 Mj occurrences of 1. Hence,

at least one of these cycles contains at least

n

( s
∏

j=1

Mj

)

/ns ≥
( s

∏

j=1

Rlj (G)

)

/ns−1 > 1

occurrences of 1. Hence g is not k-round.

In the course of the proof we shall also use the following result of Frobenius [6].

Theorem 2.6: Let G be a finite group of order n and let l|n. Then l|Rl(G).

The case where Rl(G) = l is of particular interest. The following theorem,

conjectured by Frobenius [6], waited almost a century for a proof.

Theorem 2.7 ([11]): In the setup of Theorem 2.6, if Rl(G) = l, then the set

{x ∈ G : xl = 1} is a normal subgroup of G.

Proof of Theorem 1.2. (2) ⇒ (1): Trivial.

(3) ⇒ (2): Trivial.

(4) ⇒ (3): Since a nilpotent group has a non-trivial center, Example 1.4,

Lemma 2.1 and Remark 2.4 imply that every such group is round.

(1) ⇒ (4): Suppose G is k-round for some k > n2. As explained in Remark

1.5, this implies that we may represent k in the form

k = n
( c1

pe1

1

+
c2

pe2

2

+ · · · + cr

per
r

)

for suitable positive integers c1, c2, . . . , cr, where

n = pe1

1 pe2

2 · · · per

r

is the prime power factorization of n. We have to show that G is nilpo-

tent. Consider the numbers Mj = R
n/p

ej

j

(G) of solutions of the equations

xn/p
ej

j = 1 in G. According to Theorem 2.6, applied with l = n/p
ej

j , each Mj is

a multiple of n/p
ej

j , and, in particular, Mj ≥ n/p
ej

j . If for some j this inequality

is strict, then
∏r

j=1 Mj > nr−1, so that, by Proposition 2.5, G is not k-round.

Thus Mj = n/p
ej

j for each j. According to Theorem 2.7, this implies that each

of the sets

Hj = {g ∈ G : gn/p
ej

j = 1}
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is a subgroup of G. Consider the subgroups:

H ′
j =

⋂

l6=j

Hl, j = 1, 2, . . . , r.

We observe that |H ′
j |

∣

∣(n/pel

l ) for each l 6= j, and therefore |H ′
j |

∣

∣p
ej

j . On the

other hand, h ∈ H ′
j if and only if hp

ej

j = 1, so that H ′
j is the union of all

pj-Sylow subgroups of G.

It follows that G contains a unique pj-Sylow subgroup for each j. Hence G

is the direct product of its Sylow subgroups, which means that it is nilpotent.

This completes the proof.

Proof of Proposition 1.8. Take K = (n + 1)!. Given an n-length cycle g, which

is k-round for every k ≤ K with (k, n) = 1, we have to show that it is totally

round. In fact, suppose it is not totally round. Let k0 be the minimal k with

(k, n) = 1 for which g fails to be k-round. Take m1, m2, . . . , mk for which

gm1,m2,...,mk
is not 1-1. Put k′ = k0 mod n. Consider the cycles

gm1,m2,...,mk′
, gm1,m2,...,mk′+n

, gm1,m2,...,mk′+2n
, . . . , gm1,m2,...,mk′+n!·n

.

According to our assumptions, all these are 1-1. Hence two of them are identical,

say

gm1,m2,...,mk′+jn
= gm1,m2,...,mk′+j′n

.

It follows that

gm1,m2,...,mk
= gm1,m2,...,mk′+jn,mk′+j′n+1,...,mk0

.

The cycle on the right-hand side is a product of less than k0 rotates of g, and

thus should be 1-1, which yields a contradiction.

Proof of Proposition 1.9. We have to construct a 2-round cycle in G. Denote

r = (q − 1)/p, and let u be an integer such that

(2.3) u 6≡ 1(mod q), up ≡ 1(mod q).

The group G is generated by {x, y}, satisfying the relations

xq = yp = 1,

yx = xuy.

The subgroup H = {1, x, x2, . . . , xq−1} is normal in G. Consider the cycle

g = (1, y, . . . , yp−1, x, xy, . . . , xyp−1, . . . , xq−1, xq−1y, . . . , xq−1yp−1).
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We claim that g is 2-round. To this end, we have to show that, given an integer

m, the cycle g0,m = (gigi+m)
pq−1
i=0 is a 1-1 cycle. Indeed, suppose

(2.4) gigi+m = gi′gi′+m

for some i, i′ with 0 ≤ i, i′ ≤ pq − 1. Similarly to the proof of Lemma 2.3, this

can be shown to imply, since G/H is isomorphic to Zp, that i ≡ i′(mod p). Thus

for some a1, a2, b1, b2, c we may rewrite (2.4) in the form

xa1yb1xa2yb2 = xa1+cyb1xa2+cyb2 ,

which yields (by using repeatedly the relation yx = xuy and cancelling similar

terms)

xa2ub1

= xc+(a2+c)ub1

.

Consequently

c(1 + ub1) ≡ 0(mod q),

which implies, since by (2.3) the second factor on the left-hand side cannot

vanish modulo q, that c ≡ 0(mod q). Hence, in (2.4) we have i ≡ i′(mod pq), so

that g is indeed 2-round.

Proof of Theorem 1.10. We use Proposition 2.5.

For a dihedral group Dl with 3|l, we need to show that the group is not

k-round for odd k > 3. Such a k may be written in the form c · 2 + 3, and

consequently the inequality

R2(Dl)R3(Dl) = (l + 1) · 3 > 2l = |G|

proves that the group is not k-round.

For an almost simple group G, other than 2B2(q), we have in view of [13,

Section 4] and [14, Proposition 3.1, 3.2]

R2(G)R3(G) ≥ c|G|1/2 · c|G|3/5 > |G|

for an appropriate constant c. As for the dihedral group, this implies that G is

not k-round for any k.

In the specific case of Sl, there is a lot of information regarding the numbers

Rj(G) (cf. [8] and the references therein). In particular, denoting R2,l = R2(Sl),

it is easy to prove the recurrence

R2,l = R2,l−1 + (l − 1)R2,l−2,
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from which it follows [4] that R2,l/R2,l−1 >
√

l, so that R2,l >
√

l! for l ≥ 2.

Similarly, denoting R3,l = R3(Sl), it is easy to prove the recurrence

R3,l = R3,l−1 + (l − 1)(l − 2)R3,l−3,

which implies by an easy induction that R3,l > l!2/3 for l ≥ 3. In particular,

R2,lR3,l > l! l ≥ 3,

so that Sl, for l ≥ 3, is not k-round for any k.

Proof of Theorem 1.12. Let (gi)
n−1
i=0 be a totally round cycle over G. We shall

show that the 2n-length cycle

g′ = (g0, g
−1
0 , g1, g

−1
1 , g2, g

−1
2 , . . . , gn−1, g

−1
n−1)

is a D∞-balanced cycle. In fact, it is easy to check that, for each r, the cycle

Dr(g′) consists of a merge of two 1-1 cycles, as follows. The length-n cycle con-

sisting of the entries at the places 0, 2, 4, . . . , 2(n−1) is obtained by multiplying

2r rotates of g. The length-n cycle consisting of all other entries is obtained

by inverting all entries in a product of 2r rotates of g. Since g is in particular

2r-round, each of these subcycles is a 1-1 cycle, and therefore the whole cycle

is balanced.

Proof of Theorem 1.13. Let |G| = n. There exists a balanced cycle g = (gi)
L−1
i=0 ,

with L = nr+1, such that each of the L possible (r + 1)-blocks of elements in G

appears in g exactly once. (Such cycles exist; these are the so-called complete

cycles of order r+1 in G, or De Bruijn sequences — see [3], [7, pp. 91–99]).

It is straightforwardly verified that such cycles g must be Dr-balanced.
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